KREX2 Is Not Essential for Either Procyclic or Bloodstream Form Trypanosoma brucei
نویسندگان
چکیده
BACKGROUND Most mitochondrial mRNAs in Trypanosoma brucei require RNA editing for maturation and translation. The edited RNAs primarily encode proteins of the oxidative phosphorylation system. These parasites undergo extensive changes in energy metabolism between the insect and bloodstream stages which are mirrored by alterations in RNA editing. Two U-specific exonucleases, KREX1 and KREX2, are both present in protein complexes (editosomes) that catalyze RNA editing but the relative roles of each protein are not known. METHODOLOGY/PRINCIPAL FINDINGS The requirement for KREX2 for RNA editing in vivo was assessed in both procyclic (insect) and bloodstream form parasites by methods that use homologous recombination for gene elimination. These studies resulted in null mutant cells in which both alleles were eliminated. The viability of these cells demonstrates that KREX2 is not essential in either life cycle stage, despite certain defects in RNA editing in vivo. Furthermore, editosomes isolated from KREX2 null cells require KREX1 for in vitro U-specific exonuclease activity. CONCLUSIONS KREX2 is a U-specific exonuclease that is dispensable for RNA editing in vivo in T. brucei BFs and PFs. This result suggests that the U deletion activity, which is required for RNA editing, is primarily mediated in vivo by KREX1 which is normally found associated with only one type of editosome. The retention of the KREX2 gene implies a non-essential role or a role that is essential in other life cycle stages or conditions.
منابع مشابه
Kinetic study of the plasma-membrane potential in procyclic and bloodstream forms of Trypanosoma brucei brucei using the fluorescent probe bisoxonol.
The characteristics of the plasma-membrane potential of procyclic and bloodstream forms of Trypanosoma brucei brucei (cultured cells) were investigated using the fluorescent anionic probe bisoxonol. Observation of a stable and representative plasma-membrane potential in the resting state required careful washing, centrifugation and maintenance of the cells at room temperature before measurement...
متن کاملBoth of the Rab5 subfamily small GTPases of Trypanosoma brucei are essential and required for endocytosis.
Endocytosis is an essential process in Trypanosoma brucei and all evidence suggests it is exclusively clathrin-mediated. The trypanosome genome encodes two Rab5 proteins, small GTPases that play a role in very early stages of endocytosis. In the mammalian bloodstream stage TbRAB5A localises to compartments containing internalised antibody, variant surface glycoprotein (VSG) and transferrin, whi...
متن کاملTargeted depletion of a mitochondrial nucleotidyltransferase suggests the presence of multiple enzymes that polymerize mRNA 3' tails in Trypanosoma brucei mitochondria.
Polyadenylation plays an important role in regulating RNA stability in Trypanosoma brucei mitochondria. To date, little is known about the enzymes responsible for the addition of mRNA 3' tails in this system. In this study, we characterize a trypanosome homolog of the human mitochondrial poly(A) polymerase, which we term kPAP2. kPAP2 is mitochondrially localized and expressed in both bloodstrea...
متن کاملLipidomic analysis of bloodstream and procyclic form Trypanosoma brucei.
The biological membranes of Trypanosoma brucei contain a complex array of phospholipids that are synthesized de novo from precursors obtained either directly from the host, or as catabolised endocytosed lipids. This paper describes the use of nanoflow electrospray tandem mass spectrometry and high resolution mass spectrometry in both positive and negative ion modes, allowing the identification ...
متن کاملExpression of the RNA-binding protein RBP10 promotes the bloodstream-form differentiation state in Trypanosoma brucei
In nearly all eukaryotes, cellular differentiation is governed by changes in transcription, and stabilized by chromatin and DNA modification. Gene expression control in the pathogen Trypanosoma brucei, in contrast, relies almost exclusively on post-transcriptional mechanisms, so RNA binding proteins must assume the burden that is usually borne by transcription factors. T. brucei multiply in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012